Author Affiliations
Abstract
1 MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
2 Guangzhou Key Laboratory for Special Fiber Photonic Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
3 School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China
4 Department of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
In this paper, we design a one-dimensional (1D) parity-time-symmetric periodic ring optical waveguide network (PTSPROWN) and investigate its extraordinary optical characteristics. It is found that quite different from traditional vacuum/dielectric optical waveguide networks, 1D PTSPROWN cannot produce a photonic ordinary propagation mode, but can generate simultaneously two kinds of photonic nonpropagation modes: attenuation propagation mode and gain propagation mode. It creates neither passband nor stopband and possesses no photonic band structure. This makes 1D PTSPROWN possess richer spontaneous PT-symmetric breaking points and causes interesting extremum spontaneous PT-symmetric breaking points to appear, where electromagnetic waves can create ultrastrong extraordinary transmission, reflection, and localization, and the maximum can arrive at 6.6556×1012 and is more than 7 orders of magnitude larger than the results reported previously. 1D PTSPROWN may possess potential in designing high-efficiency optical energy saver devices, optical amplifiers, optical switches with ultrahigh monochromaticity, and so on.
Waveguides Optical materials Metamaterials 
Photonics Research
2018, 6(6): 06000579

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!